
505 

Magnetohydrodynamic pipe flow. Part 1 

By RICHARD R. GOLD 
Laboratories Division, Aerospace Corporation, Los Angeles 45, California 

(Received 9 November 1961 and in revised form 27 February 1962) 

The solution is obtained to the problem of the steady one-dimensional flow of an 
incompressible, viscous, electrically conducting fluid through a circular pipe in 
the presence of an applied (transverse) uniform magnetic field. A no-slip condi- 
tion on the velocity is assumed a t  the non-conducting wall. The solution is exact 
and thus valid for all values of the Hartmann number. Excellent agreement 
exists between the present theoretical results and the experimental values 
obtained by Hartmann & Lazarus (1937) in the low to medium Hartmann 
number range. The high Hartmann number case is treated by Shercliff (1963) in 
the following paper. 

1. Introduction 
Hartmann, in his well-known paper (1937), considered the flow between two 

parallel, non-conducting walls with the applied magnetic field normal to the 
walls. An exact solution was obtained in this case because, with the exception 
of the pressure, all physical quantities depend only on the transverse co-ordinate. 
Shercliff (1953) solved the corresponding more general problem of the flow in a 
rectangular duct in which case both co-ordinates normal to  the direction of fluid 
motion appear. His exact solution again demonstrated the fact that for large 
values of the Hartmann number, the velocity distribution consists of a uniform 
core with a boundary layer near the walls. It was this result which enabled him 
to solve the corresponding problem for a circular pipe in an approximate manner 
for large Hartmann numbers assuming walls of zero conductivity and, subse- 
quently, walls with small conductivity (Shercliff 1956). Chang & Lundgren (1961) 
considered the effect of wall conductivity for this problem. 

The present paper considers the problem of the steady one-dimensional (in the 
sense that only one component of the velocity and induced magnetic field are 
assumed to exist) flow of an incompressible, viscous, electrically conducting fluid 
through a circular pipe in the presence of a uniform transverse field. A no-slip 
condition on the velocity is assumed at the non-conducting wall. The flow is 
along the z-axis which coincides with the axis of the cylinder, and the applied 
magnetic field is along the z-axis, uniform and normal to the flow. The solution is 
exact and thus is valid for all values of the Hartmann number. 

2. Basic equations 
The motion of an electrically conducting fluid in the presence of a magnetic 

field obeys the well-known equations of magnetohydrodynamics. The fluid is 
treated as a continuum, and the classical results of fluid dynamics and electro- 
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dynamics are combined to express the phenomenon. For the steady flow of a 
viscous, incompressible fluid with constant properties, the full magnetohydro- 
dynamic system can be reduced to just two equations involving the velocity, 
pressure, and magnetic field, i.e. the modified Navier-Stokes equation and the 
induction equation, along with the solenoidal conditions on the two vector 
quantities : 

P(V.  V) v - (p/47~) (H . V) H = - V(p +pH2/8n) + 7V2v, 

(477;~~)  V x (V x H) + V2H = 0, 

( 1 )  

(2) 

V . V  = 0, V . H  = 0, (3, 4) 

where p, p ,  7, p, v, and v are the fluid density, pressure, viscosity, permeability, 
velocity, and electrical conductivity, respectively, H is the magnetic field 
strength, and absolute electromagnetic units are used. 

In  the present one-dimensional problem, i t  is consistent with both the 
governing equations and the boundary conditions to assume that there is only 
one component of the velocity, v,, and only one component of the induced 
magnetic field, H,, along with the applied field H,, so that the total velocity and 
magnetic field are given by 

(5) I v, = Be = 0) @, = ?J,(r, 8); 
H, = H, cos 8, He = - H, sin 8, H, = H,(r, O) ,  

where, except for the pressure, a( )/ax = 0. Substituting these expressions into ( l ) ,  
using cylindrical-polar co-ordinates, we obtain 

p(r ,  e,z) = - (ppn) g + K,z + K,, +lax = const. = K,, (6) 

where H, and He are given in equation (5). Equations (3) and (4) are identically 
satisfied, while equation ( 2 )  becomes 

Equations (6) through (8) define thevariablesp(r, 8, x), v,(r, B), and H,(r, 8) subject 
to the following homogeneous boundary conditions. There is no fluid slip at the 
wall, hence 

where a is the radius of the cylinder, while the assumption of non-conducting walls 
implies that (see Shercliff 1953) 

When (6) through (10) have been solved forp, us, and H,, we can obtain the current 
density J and the electric field strength E from AmpBre’s law and Ohm’s law, 

@,(a,@ = 0, (9) 

H,(a,O) = 0. ( 10) 

respectively 
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Let us now introduce the non-dimensional variables v = va/vo, H = H,/Ho, 
p = r/a, where vo is some characteristic velocity, a is the radius of the pipe, and Ho 
is the uniform applied transverse field. Equations (7)  and (8) take on the following 
form in v(p, 8) and H(p ,  0) 

where 

is the Hartmann number, RIM = 4;rrc7,uv0a is the magnetic Reynolds number, and 
K = K,a2/voq. 

3. Exact solution 
It is possible to eliminate the first-order derivatives in such equations by the 

customary procedure of introducing an exponential factor exp [(const.) XI. At 
the same time, the equations may be readily uncoupled by a linear transforma- 
tion. It follows that the substitutions 

transform equations (13) and (14) into the simplified forms 

vy- a2f = 0, v2g - a2g = 0, (17,181 

where a = +M. It is perhaps noteworthy to point out that the above discussion is 
restricted only by the assumptions of one-dimensionality , no variation of the 
physical quantities (except for the pressure) in the flow direction, and a uniform 
applied transverse field. Thus, equations (17) and (18) apply to any such general 
magnetohydrodynamic (incompressible, steady) duct flow. The restriction as to 
geometry and the conditions a t  the wall will enter through the boundary condi- 
tions. In  the present problem (9) and (10) reduce to the following non-homo- 
geneous boundary conditions on f and g 

f( 1,8) = - ( K / h )  cos 8 em cos 6, g( 1,e) = (K/2a)  cos 8 mse. (19) 

The solution of equations (17) through (19) has been obtained using a Fourier 
analysis (Tanazawa 1960; Fabri & Siestrunck 1960; Uflyand 1960; Gold 1961; 
Uhlenbusch & Fischer 1961). The velocity and magnetic-field distributions as 
presented in the author’s paper are given by 

= -K[e-aPmso c E , ~ ~ , ( a p ) c o S n e + e a p ~ o s e  c (-l)ne:,-~,(olp)cosne , 1 134 m m 

4a n=O m) n=O In(a) 
( 2 0 4  
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m 

cosh (ap cos 8)  C en'* Izn(ap) cos 2n6 
or 

n=O &%(a) 

"n+l(a) I (ap) cos (2n + 1) 6 , (20b)  2 ____ 

where In is the modified Bessel function of order n, en = 1 for n = 0, 8, = 2 for 
n > 0;  and the minus sign reflects the fact that v is opposite in sign to the pressure- 
gradient term in K ,  and 

1 m 

- sinh (ap cos 8 )  
n = O  I2,+1(4 

m '  

cosh (ap cos 8) C ~ ~ ! ? ~ ) I ~ ~ + ~ ( a p )  cos (2n + 1) 8 
4a2 n=o Izn+,(a) 

or 

1 W 

- sinh(ap cos 8)  2 2 1 ~ 9 1 z n ( a p )  cos 2n8-p cos 8 . (21 b )  
n=O I2n(a) 

Expanding (20b)  for small values of a we obtain 

lim w(p,8; a)  = -$K(l-pz)) ,  or wzla=o = - ___ (waz) (($2 - r2) ,  

a+O 411 

which is the classical non-conducting result. 

P 

FIGURE 1. Velocity distribution in the pipe, 0 = 0. 

The velocity and magnetic field profiles are plotted in figures 1 and 3 for 8 = 0 
and for several values of the Hartmann number M = 2a. As M increases, the 
uniform core of velocity is clearly demonstrated. Figure 2 shows the variation of 
v withp at 8 = Qn in which case the core-like character of the velocity distribution 
is less apparent. Note that H ( p ,  Qn) = H ( p ,  $r) = 0 such that there is no current 
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flow across the y-axis, - 1 < p < 1. The following additional properties are 
readily obtained from (20) and (21) 

v(p, 6 If: 74 = v(p,  @, v(p,  - 0) = v(p, 01, 

H(P, 8 f 74 = - H(P, @, H(p,  - 0) = H(p, @, 

- H(0,O) = 0. 
- K I;@) 

v(0,O) = ____ - ____ 
2a lo(&) - 2a ],(a)’ 

Using equations (1 1) and (12) we obtain, in non-dimensional form, 

E, = p ~ , v ,  [(L) -vsine . 
RMP a@ 1 

0.9 1.0 

FIGURE 2. Velocity distribution in the pipe, i3 = ST. 

P 

FIGURE 3. Induced magnetic field, 0 = 0. 
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The electric potential K b  between the points a = (1, &r) and b = ( 1 ,  - in) induced 
by the motion is 

The sensitivity S, employed by Shercliff (1956), is thus given by the following 
expression which is valid for all a, 

1 .oo 

0.98 

a 
0.96 

8 

'3 0.94 
8 
v1 

.k +' 

0.92 

0.90 
0 2 4 6 8 10 I2 14 16 18 20 

Hartmann number, M 

FIGURE 4. Sensitivity vu9 Hartmann number. 

4. Comparison of present results with experimental data and Shercliff's 
large M approximate theory 

In  order to compare the present results with the experimental values given by 
SherclS (1953), it is necessary to obtain the mean velocity by integrating the 
velocity distribution over the circular cross-section, i.e. 

1 1 271 

7T p=o e=o 
qa) = -J I pv(p, e)ap do.  

Using (20a) ,  the identities 

and the expression 

we obtain for the mean velocity 

( 2 5 )  
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The following alternate forms are of interest 

51 1 

and 

0 

Hartmann number, M 

FIUURE 6. Mean velocity v8 Hartmann number. -, Present theory; 0 ,  x , experi- 
mental data of Hartmenn & Lazarus. 

while additional representations may be derived by expressing IA(a) differently 
or by summing the series nzIn(a) IA(a) separately. Note that in dimensional form, 
- V/K = ;ijz/7ca2, where (ap/az) = - 7 c ~  andGZis theintegrateddimenaionalvelocity, 
wo in Shercliffs notation. The classical result must follow from (26) and, indeed, 

In  figure 5 the reciprocal relation Ica2/Gz is plotted versus the Hartmann number. 
The agreement between the present theory and the numerical data of Hartmann 
& Lazarus (1937) is clearly shown. In  summing (26 )  for large values of a, 
numerical difficulties are encountered because of the appearance of small 
differences between very large numbers. As a result ka2/EZ was not computed 
exactly in this range. An asymptotic expansion of the solution was sought in the 
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following manner. Introducing a logarithmic substitution u(01) = In [IJa)] into 
Bessel's equation we can derive an asymptotic representation for the function 
u'(01) = IA(01)/1~(a). Substituting this result into the velocity distribution (20a)  
we obtain a (1/M) correction to Shercliffs solution (1953) 

with the corresponding integrated value 

By a similar calculation it follows, to first order, that 

Kn - h 2 n  -3n2 =-- - - 0.925. 
f lM,.1= = 8av, 32 

Although the series representations which lead to (27) diverge at p2sin2L9 = 1, 
the mean velocity can still be derived since the corresponding integrals converge. 
A more serious formal consideration arises from the use of the asymptotic 
representation for 1;(01)/1~(01). Being semiconvergent in that it is valid only for 
n sufficiently small compared with 01 (which is large but fixed), its use in the 
infinite sums in equation (20 a )  cannot be formally justified. Examination of the 
numerical convergence of the resultant infinite sums indicates that the contribu- 
tion of the terms beyond the validity of the asymptotic expression is negligibly 
small (of the order l/a2). In  the final analysis, however, observe that the (l /M) 
correction in (27), like Shercliffs first-order result, states that v is a function of 
y = rsin6 only and does not satisfy the boundary condition v = 0 a t  the wall 
(except at the points y = & a). Mathematically this may be related to the afore- 
mentioned divergence a t  p2sin26 = 1. Physically, it  is clear that (27) represents 
the core profile and the boundary-layer defect is not fully accounted for in 
equation (28). 

The large Hartmann number case is treated in the following paper by Shercliff, 
thus extending his earlier analysis (1953). Accounting for the boundary-layer 
defect, for example, results in a refined value of (3n/2M) in (28)  which is in good 
agreement with his earlier experimental results (1956). 
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